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1 Blackbody Radiation

Assuming the energy of radiation to be continuously variable show that ⟨E⟩ = kT and obtain the
Rayleigh-Jeans radiation formula. Assuming the energy of radiation to be quantized, also show
that ⟨E⟩ = hv/[ehv/kT − 1] and obtain the Planck Radiation formula.

1.1 Solution

We seek to prove that ⟨E⟩ = kT . The average of any function is given as

⟨E⟩ =
∫∞
0

EP (E) dE∫∞
0

P (E) dE

As P (E) is usually normalized,
∫∞
0

P (E) dE = 1, but we may demonstrate this rigorously knowing

that P (E) = e−E/kT /kT . Why is P (E) defined to be e−E/kT /kT? I will explain this rigorously in
the derivation section.∫

P (E) dE =

∫ ∞

0

e−E/kT

kT
dE =

1

kT

∫ ∞

0

e−E/kT dE = −kT

kT
e−E/kT

∣∣∣∣∣
E=∞

E=0

= −(e−∞/kT − 1) = 1

We now seek to evaluate
∫∞
0

EP (E) dE, which may be expanded as∫ ∞

0

Ee−E/kT /kT dE =
1

kT

∫ ∞

0

Ee−E/kT dE

We execute integration by parts with u = E, du = dE and dv = e−E/kT dE, where v = −kTe−E/kT .

1

kT

∫ ∞

0

Ee−E/kT dE =
1

kT

(E)(−kTe−E/kT )

∣∣∣∣∣
E=∞

E=0

−
∫ ∞

0

−kTe−E/kT dE

 =
1

kT

∫ ∞

0

kTe−E/kT dE

1

kT

∫ ∞

0

Ee−E/kT dE =

∫ ∞

0

e−E/kT dE = kTe−E/kT

∣∣∣∣∣
E=∞

E=0

= kT (e−∞/kT − 1) = kT

To obtain the Rayleigh-Jeans Law for Blackbody Radiation, our strategy will be to find the number
of electromagnetic harmonics that can fit inside a blackbody – a Jeans Cube, for simplicity.

Figure 1: Wavelength of nth Harmonic
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Armed with the wavelength of the nth Harmonic, we may express the electromagnetic wave as
A sin(kxx) sin(kyy) sin(kzz), where the wavenumbers may be expressed as

kx =
2π

λx
=

2π
2L
n

=
nπ

L
, ky =

2π

λy
=

mπ

L
, kx =

2π

λz
=

lπ

L

We thus have the total magnitude of the wavenumber k as

k2 = k2x + k2y + k2z =
(nπ
L

)2
+
(mπ

L

)2
+

(
lπ

L

)2

=
π2

L2
(n2 +m2 + l2)︸ ︷︷ ︸

p2

k =
π

L
p → dk =

π

L
dp

To find the number of waves that can fit in the momentum space, we consider a spherical volume

Figure 2: Sphere in Momentum Space

We consider only the part of the spherical volume which is in the first octant, to avoid k < 0, which
results in a factor of 1

8 . We know that dp = L
π dk from above, which gives

dV =
1

8
4πp2dp =

1

8
4π

(
Lk

π

)2(
L

π
dk

)
=

4πL3k2

8π3
dk =

L3k2

2π2
dk =

V k2

2π2
dk

L3 is a volume, so I’ve replaced it with V . Remember, the whole name of the game is to come back
to the frequency of the electromagnetic wave (or synonomously, wavelength). To do so, we recall

ω

c
= k → k =

2πf

c
→ dk =

2π

c
df

dρ =
k2

2π2
dk → dρ =

(
2πf
c

)2
2π2

2π

c
df =

4π2f2

c2

πc
df =

4π2f2

πc3
df

Owing to the two possible polarizations of electromagnetic waves, of which all other polarizations
are linear combinations, we multiply this density by a factor of 2 to obtain

dρ =
8πf2

c3
df → ρ =

8πf2

c3
kT
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We have finally derived the Rayleigh-Jeans radiation radiation formula. We now seek to derive that
if the energy of radiation is quantized, the average energy is

⟨E⟩ = hf

ehf/kT − 1

The derivation will proceed as follows:

1. Let Ni be the number of oscillators in state Ei.

2. The probability goes down as e−∆E/kT , where ∆E is the excess energy.

3. The number of oscillators N1 in the first state will be however many were in the second state
multiplied by the probability e−hf/kT . Repeat until the ith state Ni to get the total number
of oscillators Ntot

4. What about the energy of each of these oscillators? The ground state has no energy. The
first state has energy hf for each of the N1 oscillators. The second state has energy 2hf for
each of the N2 oscillators. Likewise for the ith state.

The diagram below illustrates our strategy of finding Ei and Pi for each energy level.

Figure 3: Energy Levels of a Harmonic Oscillator

The energy of the ground state is thus 0. For the first state, we have

E1 = N1 ∗ hf = N0e
−hf/kT ∗ hf

Likewise for the second state, we have

E2 = N2 ∗ 2hf = N0(e
−hf/kT )2 ∗ 2hf

As it seems to repeat many times, we denote x = e−hf/kT . Our total energy is thus of the form

Etot = E1 + E2 + E3 + ... = N0e
−hf/kT ∗ hf +N0(e

−hf/kT )2 ∗ 2hf +N0(e
−hf/kT )3 ∗ 3hf + ..

Etot = E1 +E2 +E3 + ... = N0x ∗ hf +N0x
2 ∗ 2hf +N0x

3 ∗ 3hf + .. = N0hf(x+ 2x2 + 3x3 + ...)

As for the total number of oscillators Ntot, we have

Ntot = N0 +N1 +N2 +N3 + ... = N0 +N0 ∗ e−hf/kT +N0 ∗ (e−hf/kT )2 ++N0 ∗ (e−hf/kT )3 + ...
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Substituting for x = e−hf/kT , we have

Ntot = N0 +N0 ∗ x+N0 ∗ x2 ++N0 ∗ x3 + ... = N0(1 + x+ x2 + x3 + ...)

The average energy is thus

⟨E⟩ = Etot

Ntot
=

N0hf(x+ 2x2 + 3x3 + ...)

N0(1 + x+ x2 + x3 + ...)

We begin with the infinite summation on the denominator:

S = 1+x+ x2 + x3 + ...

−(Sx =x+ x2 + x3 + ...)

Subtracting these two sums clearly gives S(1 − x) = 1 → S = 1
1−x . We may execute a similar

strategy for the sum on the numerator:

S = x+ 2x2 + 3x3 + ...

−(Sx =x2 + 2x3 + ...)

Subtracting the two infinite sums gives S(1− x) = x(1 + x+ x2 + ...). We recognize this sum!

S(1− x) = x
1

1− x
→ S =

x

(1− x)2

Making the necessary substitutions into ⟨E⟩, we have

⟨E⟩ = Etot

Ntot
=

N0hf
x

(1−x)2

N0
1

1−x

= hf
x(1− x)

(1− x)2
=

hfx

1− x
∗

1
x
1
x

=
hf

x−1 − 1
=

hf

ehf/kT − 1

Multiplied by the number density of waves, Planck’s Blackbody Radiation Law is

ρ =
8πf2

c3
hf

ehf/kT − 1

Vóıla! Above lies the one-inch equation which would revolutionize our understanding of the universe.

1.2 Derivation

I promised I would explain why quantum mechanics dictates P (E) = e−hf/kT . While I cannot
supply the full explanation here, the following brief thought experiment from Feynman may illu-
minate matters a bit. Thought it may seem wholly unrelated, consider the following situation: the
atmosphere – but not the Earth’s atmosphere. No, a constant-temperature atmosphere. Should
the temperature differ between heights, we have a means of achieving thermal equilibrium, by con-
necting a socket from a higher pressure region below to a lower pressure region above. The question
is this: how does the number of atoms n in the atmosphere change as we go up? As we will shortly
see, this is nearly analogous to finding the number of oscillators as we ascend the energy levels of
a harmonic oscillator. The ideal gas law states that PV = NkT (don’t mind the change in con-
stant), with n = N/V being the number of molecules per unit volume. After some basic pressure
calculations which may be found in Chapter 40 of Feynman’s Lectures, we find that dn

dh = −mg
kT n.

It is from this differential equation that the probability e−E/kT arises.
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Figure 4: Feynman’s Thought Experiment (Ch. 40)

2 Blackbody Radiation #2

The universe is filled with blackbody radiation at 2.7 K left over from the Big Bang. (a) What is the
total energy density of this radiation? What is the total energy density with wavelengths between
1 mm and 1.01 mm? Is Rayleigh-Jean’s formula a good approximation at these wavelengths? (c)
Over what range of frequencies does the Rayleigh-Jean’s formula give a result within 10% of Planck
blackbody spectrum?

2.1 Solution

Employ the Stefan-Boltzmann Law, we have

U = σT 4 = (5.67 ∗ 10−8W/m
2
K4)(2.74K4) = 3.01 ∗ 10−6W/m2

We seek to find the total energy density between λ1 = 1mm and λ2 = 1.01mm. Our first order of
business will be to convert this into the frequencies f1 = c

λ1
= 3∗1011Hz and f2 = c

λ2
= 2.97∗1011Hz,

as that is the input for our Blackbody Radiation formula. Yes, we can convert our original formula,
but this strategy is faster. Essentially, all we are doing is finding the area under the blackbody
curve. We may as well integrate, but since the domain of integration is so small, we can also take
the frequency at λ = 1.005mm and simply multiply this by ∆f . For the time being, I will simply
substitute the known frequencies into the Planck Blackbody Radiation formula and calculate their
difference as follows:

ρ(f1 = 3∗1011Hz) =
8π(3 ∗ 1011Hz)2

(3 ∗ 108m/s)3
(6.62 ∗ 10−34m2kg/s)(3 ∗ 1011Hz)

e(6.62∗10−34)(3∗1011)/(1.38∗10−23)(2.7) − 1
= 8.09∗10−26Hz3kg s2/m

ρ(f2 = 2.97∗1011Hz) =
8π(2.97 ∗ 1011Hz)2

(3 ∗ 108m/s)3
(6.62 ∗ 10−34m2kg/s)(2.97 ∗ 1011Hz)

e(6.62∗10−34)(2.97∗1011)/(1.38∗10−23)(2.7) − 1
= 8.289∗10−26Hz3kg s2/m

∆ρ = ρ(f2)− ρ(f1) = (8.289 ∗ 10−26 − 8.09 ∗ 10−26)Hz3kg s2/m = 1.996 ∗ 10−27Hz3kg s2/m

Rayleigh-Jeans is a suitable approximation for low frequencies and high wavelengths. Clearly, at
such exceedingly high wavelengths in the millimeter range, Rayleigh-Jeans is a fine approxima-
tion. To calculate the range of frequencies over which Rayleigh-Jeans gives a result within 10%
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of Planck’s blackbody spectrum, I created a python program to numerically compute their dif-
ference until it exceeded 10%. Analytically, we may simply calculate when the difference in the
Planck and Rayleigh-Jeans energy densities exceeds 10%. The result was that for any wavelength
λ > 6675.375375375375 nm, Rayleigh-Jeans gives a result within the desired threshold of Planck’s.

Figure 5: Result of Blackbody Radiation Program

2.2 Derivation

Rayleigh-Jeans is a good approximation in the low frequency regime where hf << kT . In fact,
Planck’s Blackbody Radiation Law approaches Rayleigh-Jean at low frequencies:

ex =
∑
n

xn

n!
→ ehf/kT = 1 +

hf

kT
+

[
hf
kT

]2
2!

+

[
hf
kT

]3
3!

+ ...

Let’s do a second order approximation so that

ehf/kT ≈ 1 +
hf

kT
→ ρ =

8πf2

c3
hf

ehf/kT − 1
=

8πf2

c3
hf(

1 + hf
kT

)
− 1

=
8πf2

c3
kT
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3 Photoelectric Effect

Suppose light of total intensity 1.0 µW/cm2 falls on a clean iron sample 1.0 cm2 in area. Assume
that the sample reflects 96% of the light and only 3% of the absorbed energy lies in the violet
region of spectrum above the threshold frequency of 1.1 ∗ 1015 Hz. What effective intensity is
available for generating photoelectrons? Assuming that all the photons in the violet region have an
effective wavelength of 250 nm, how many electrons will be emitted per second? What will be the
magnitude of photoelectric current? Find the work function of the surface in electron-volts, and
stopping voltage required for zero current.

3.1 Solution

The effective intensity is 3% of the light which lies in the desired frequency range of the 4% of the

light which is absorbed. This translates to 0.03 ∗ 0.04 ∗ 1µW/cm2 = 0.0012µW/cm2

How do you get time involved in a question about the photoelectric effect? The key is Power.
Recall that P = W

t . If we are able to find the power on a section of the iron sample and the Kinetic
Energy given to the electrons, we are home free. How can we find Power? Recall that

P = IA = (0.0012)(1) = 0.0012µW

I did not convert the area to square meters, since the intensity of the light source is also given in
cm2, so that they will cancel anyway. As for the energy of the photons, we have

E =
hc

λ
=

(6.62 ∗ 10−34)(3 ∗ 108)
250 ∗ 10−9

= 7.944 ∗ 10−19J

But we don’t have one photon – we have N photons, with a total energy of N(7.944∗10−19J). Our
goal is to determine the number of electrons ejected per second, N

t

P =
NE

t
→ N

t
=

P

E
=

0.0012µW

7.944 ∗ 10−19J
= 1.51 ∗ 1015

Finding the Work Function is elementary. All we need to know is the minimum frequency neede
to eject these electrons – and we know this! It’s f0 = 1.1 ∗ 1015 Hz. For a metal, we have

ϕ = hf0 = (6.62 ∗ 10−34)(1.1 ∗ 1015) = 1 ∗ 10−18J To determine the stopping potential, we begin
with the photoelectric equation

KE = ϕ− E → eV = hf0 −KE → V =
hf0 −KE

e
=

1 ∗ 10−18 − 7.944 ∗ 10−19

1.6 ∗ 10−19
= −4.9 ∗ 1038V

4 Photoelectric Effect #2

The work function of sodium is 2.3 eV. What is the maximum wavelength of light that will cause
photoelectrons to be emitted from a sodium surface? What will be the maximum kinetic energy of
the photoelectrons if light of wavelength 200 nm shines on a sodium surface? (c) If the power of the
200-nm beam is 5.0 mW, how many photoelectrons will be ejected from the surface in 5 minutes?
Assume every incident photon ejects a photoelectron, and that the electrons on the metal surface
are not significantly depleted because of photoelectron ejection.
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4.1 Solution

We begin by writing the Photoelectric equation for sodium:

E = ϕ+KE → E = 2.3 +
hc

λ

But think about it. If we’re using the maximum wavelength possible, we’re just scraping by, being
as lazy as possible. That means the particle will have no Kinetic Energy. We thus have

2.3 =
hc

λ
→ λ =

2.3

hc
=

2.3

(6.62 ∗ 10−34)(3 ∗ 108)
= 8.64 ∗ 10−26m

To find the maximum Kinetic Energy of the photoelectrons when 200 nm light is shone upon the
sodium surface, we employ the Photoelectric equation as follows:

Ephoton = ϕmin +KE → KE = Ephoton − ϕmin =
hc

λ
− 2.3 =

(6.62 ∗ 10−34)(3 ∗ 108)
200 ∗ 10−9 − 2.3

KEmax = 9.93 ∗ 10−19J − 3.68 ∗ 10−19J = 6.25 ∗ 10−19J

To find the number of electrons ejected in 5 minutes, we leverage the same trick we used in the
previous photoelectric problem. Namely, we know that power is defined as

P =
W

t
=

NE

t
→ N =

Pt

E
=

(5 ∗ 10−3W) ∗ (5 ∗ 60s)
6.25 ∗ 10−19J

= 2.4 ∗ 1018 electrons

5 Compton Scattering

Show that when a photon of energy E is scattered from a free electron at rest, the maximum kinetic
energy of the recoiling electron is given by

Kmax =
E2

E +m0c2/2

5.1 Solution

I was initially puzzled on how to solve this. I started by using conservation of energy and conser-
vation of momentum, as follows:

Ephotoni
+ Eelectroni

= Ephotonf
+ Eelectronf

hf +m0c
2 = hf ′ +K

But I was short of a crucial parameter: what is f ′? Aha! Enter Compton Scattering. The Compton
Wavelength Shift is given as

λ′ − λ =
h

mc
(1− cosϕ)

For the electron to gain the maximum kinetic energy, the photon must give off almost all of its initial
energy (but – the photon cannot be absorbed into the electron! We may show this quite simply
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using conservation of energy and the total relativistic energy of the electron. This will ultimately
result in pe = 0, which implies that λ = ∞, which is impossible). I thus thought that ϕ = π, which
would result in

λ′ − λ =
2h

mc
→ λ′ = λ+

2h

mc
Solving for K in the conservation of energy equation, we have

K = hf ′ − hf +m0c
2 → K = h

( c

λ′ −
c

λ

)
+m0c

2 = hc

(
1

λ′ −
1

λ

)
+m0c

2

K = hc

(
1

λ+ 2h
mc

− 1

λ

)
+m0c

2 =
λ

λ(λ+ 2h
mc )

−
λ+ 2h

mc

λ(λ+ 2h
mc )

=
− 2h

mc

λ(λ+ 2h
mc )

KE = − 2h

λ2mc+ 2hλ

I’m not sure where my derivation went wrong. Obviously, KE cannot be wrong, and it nowhere
near matches the correct answer, but I’m not quite sure how to fix my derivation.

5.2 Derivation

Let’s derive the Compton Scattering Wavelength shift. The key is to setup the diagram correctly.

Figure 6: Compton Scattering Diagram

By Conservation of Energy, we have

p1c+ E0 = p2c+ (E2
0 + p2ec

2)

Let’s move the p2 term and square both sides to get rid of the square root:

E2
0 + c2(p1 − p2)

2 + 2cE(p1 − p2) = E2
0 + p2ec

2
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Solving for p2e and grouping terms, we have

p2e = p21 + p22 − 2p1p2 +
2E0(p1 − p2)

c

We eliminate p2e from both sides to give

E0(p1 − p2)

c
= p1p2(1− cos θ)

We now multiply both sides by hc
p1p2E0

and substitute λ = h
p , which gives Compton’s Equation!

λ2 − λ1 =
hc

E0
(1− cos θ) =

hc

mc2
(1− cos θ)

Finally, this gives us

λ2 − λ1 =
h

mc
(1− cos θ)

6 Compton Scattering #2

A photon of initial energy 0.1 MeV undergoes Compton scattering at an angle of 60◦. Find (a)
energy of the scattered photon; (b) kinetic energy of the electron which was at rest before the
collision; and (c) recoil angle of the electron.

6.1 Solution

To find the energy of the scattered photon, we recall that the energy of a photon is inversely
proportional to its wavelength λ. We thus must first compute the Compton wavelength shift of the
photon using

λ′ = λ+
h

mc
(1− cos θ)

The photon’s initial energy of 0.1 MeV = 1.602 ∗ 10−20J tells us that

Ephotoni =
hc

λ
→ λ =

hc

1.602 ∗ 10−20J
= 1.23970037 ∗ 10−5m

All that remains is to substitute the known quantities into our equation to obtain

λ′ = 1.23970037 ∗ 10−5 +
h

mc
(1− cos(60)) = 1.2397005 ∗ 10−5m

As expected, the wavelength has increased, and the photon has thus lost energy!

Ephotonf
=

hc

λ′ =
hc

1.2397005 ∗ 10−5
= 1.60199984 ∗ 10−20J

The Kinetic Energy of the electron at rest may be calculated by a simple conservation of energy
calculation:

Ephotoni
+ Eelectroni

= Ephotonf
+ Eelectronf

1.602 ∗ 10−20 +mec
2 = 1.60199984 ∗ 10−20 + Eelectronf

Eelectronf
= 1.602 ∗ 10−20 +mec

2 − 1.60199984 ∗ 10−20
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7 X-Ray Scattering

X-rays are produced in an x-ray tube by electrons accelerated through 50 KV. Let K be the kinetic
energy of an electron at the end of the acceleration. The electron collides with a target nucleus and
then has a kinetic energy of K1 = 0.5K. (a) What is the wavelength of the emitted X-ray? (b)
The electron collides with another target nucleus, and then has the energy K2 = 0.5K1. What is
the wavelength of the associated photon?

7.1 Solution

Let’s start at the end: the wavelength of a photon is related to its energy by the classic equatoin

E =
hc

λ
→ λ =

hc

E

By conservation of energy, we may find the amount of energy left over for kinetic enregy, which
we may then substitute into the equation above. We thus have K0 = eV = 50keV,K1 = 0.5K0 =
25keV . It is now clear that there is a kinetic energy of 25keV , which gives a wavelength

λ =
hc

E
=

hc

25keV
= 49.6m

What about the emitted photon after the second collision? We employ the same approach, but this
time with K2 = 0.5K1 = 0.5 ∗ 25keV = 12.5keV , which gives

λ2 =
hc

12.5 ∗ (1.6 ∗ 10−19)
= 99m

8 Bragg’s Law

An X-ray beam of wavelength λ undergoes first order reflection from a crystal when the angle of
incidence to a crystal face is 23◦, and an X-ray beam of wavelength 97 pm undergoes third order
reflection when its angle of incidence to the same face is 60◦ . Assuming that the two beams reflect
from the same family of reflecting planes find the wavelength and inter-planar spacing.

8.1 Solution

This is a simple application of Bragg’s Law, which states that

nλ = 2d sin(θ)

This is the equation for constructive interference when X-Rays scatter and experience diffraction
in crystals. We know that θ = 23◦ for n = 1, but we do not know λ. On the other hand, we have
θ = 60 for λ = 97 pm and n = 3. This gives

(1)λ = 2d sin(23)

(3)(97pm) = 2d sin(60) → d = 1.68 ∗ 10−10m

Thus, the wavelength for the first-order diffraction is simply

λ = 2(1.68 ∗ 10−10) sin(23) = 1.31 ∗ 10−10m
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